Electro-Motive Diesel, Inc. Locomotive Experiences

Presented To
ARB/RR Railyard MOU Public Meeting
Sacramento, California
13 July 2006

David E. Brann

Manager, Emissions Compliance
Electro-Motive Diesel, Inc.

Presentation Topics

- Emissions Technology Transfer to Locomotives from Other Vehicles
- EMD Tier 2 Locomotives
 - 67% NOx emissions reduction
 - 50% CO, HC, PM emissions reduction
 - Reduced visible smoke

Do on-highway engines "show the way" for locomotives?

 Standards and technology cascade from onhighway to off-highway to locomotives and marine vessels.

But . . .

- Major locomotive builders do not build on- or off-highway engines.
- Technology successful in truck engines often does not transfer well to locomotives.

Major locomotive builders do not build truck engines.

- On-highway engine builders:
 - Caterpillar
 - Cummins
 - Detroit Diesel
 - International
 - Mack

- Locomotive engine builders
 - General Electric
 - Electro-Motive
 - Caterpillar

Technology successful in truck engines often does not transfer well to locomotives.

- Differing operating cycles
 - On-highway: Transients in power and speed
 - Locomotive: Steady-state
- Differing operating modes
 - On-highway: High power = High speed
 - Locomotive: High power = Low speed
- Packaging constraints
- Phasing-in of fuel sulfur regulations

Differing operating cycles Example: Electronic injection control

- On-highway vehicles have made improvements in fuel economy and emissions with electronic engine control, largely through management of transients.
- Locomotives operate at steady state.
 - Mechanical control works as well as electronic
 - Slight electronic advantages:
 - ✓ Durability of settings
 - ✓ Control of transient smoke

Differing operating modes Example: Air-to-Air Aftercooling

- In on-highway vehicles, high power is used to go fast.
- In locomotives, high power is frequently used to haul heavy cargo slowly.
- It's always known which end of an on-highway tractor is the front; with locomotives it's 50-50.
- Unlike trucks, locomotives are subjected to very high ambient temperatures in tunnel operation.
- Result: Air-to-air is a relatively easy application on a truck; on a locomotive space must be found for it, all air must be moved by fans, and sometimes the cooling is absent.
 - Lower emissions benefit
 - Less fuel consumption improvement
 - Loss of aftercooling capability in tunnels

Packaging Constraints Example: Aftertreatment

- Locomotives are limited in size and weight
 - Approx. 16' 1" high x 10' 8" wide x 80' long max.
 - Approx. 420,000 lbs maximum weight
- Functional constraints
 - Locomotive has to carry fuel for operational range
 - Crew has to be able to pass between units in consist
 - Crew has to be able to see along locomotive to monitor train
 - Locomotive design has to allow for maintenance

Packaging Constraints Example: Aftertreatment (2)

- Locomotive is full of machinery
 - Engine, transmission, fuel tankage, support systems, trucks
 - Crew space and crew amenities
 - Empty space used for maintenance requirements
- Space for aftertreatment reactors and required reagents is limited
 - Space of current silencer (approx. 55" wide x 37" long x 30" high, about 35 cu. ft., about the size of an office desk).
 - Current estimate of particulate trap 47 cu. ft., elements only, not allowing for ductwork
- Development for high effectiveness in small space required.

Other issues in technology transfer: Shock loads

- Locomotives are subject to longitudinal shock loading:
 - Slack action in train
 - Hard coupling
- Design criterion: <u>+</u>3 g's acceleration Would wreck a car or truck
- Shock loads are a challenge for heavy things mounted up high, e. g. ceramic catalyst elements.

Other issues in technology transfer: Drag and buff loads

- In operation, locomotives experience tensile (drag) and compressive (buff) loads.
- The loads bend the locomotive:

Result: Piping in locomotive (for cooling system, aftertreatment, etc.) must be designed to accommodate several inches of relative motion.

Ultra-Low Sulfur Diesel Fuel

- Required for aftertreatment, to prevent:
 - Diesel oxidation catalysts: Sulfate particulate formation
 - Particulate traps:
 - ✓ Passivation of catalysts
 - ✓ Sulfate fouling of filter
 - Selective catalytic reduction of NOx: Ammonium sulfate formation
 - NOx adsorbers: Catalyst passivation
- Nationwide ULSD availability required for successful line haul locomotive applications
 - Truck ULSD: 2006
 - Nonroad ULSD: 2010
 - Rail and marine ULSD: 2012

SD70ACe Locomotive

- 4300 traction horsepower freight locomotive
- AC traction motors
- EPA Tier 2 emissions certified
- 3 for 5 replacement of 1970's locomotives

- Automatic Engine Stop-Start (AESS) for idle minimization is standard equipment
- Impact resistant fuel tank minimizes spills and leakage
- Two hundred fifty-seven delivered to date.

SD70M-2 Locomotive

- 4000-4300 traction horsepower freight locomotive
- DC traction motors
- EPA Tier 2 emissions certified
- 3 for 4 replacement of 1970's locomotives

- Impact resistant fuel tank minimizes spills and leakage
- One hundred thirty-five delivered to date.

Tier 2 Switcher: GP20D

- 2000 traction horsepower branch line and switching locomotive
- DC traction motors
- EPA Tier 2 emissions certified
- 15% better fuel efficiency than older switchers

- Satisfies FRA and AAR crashworthiness requirements
- 13 built

www.emdiesels.com